Answer:
Option A
Explanation:
Since , g(x) is differentiable ⇒ g(x) must be continuous.
∴ g(x)={k√x+1,0≤x≤3mx+2,3<x≤5
At x=3, RHL=3m+2
and at x=3, LHL=2k
∴ 2k=m+2 .........(i)
Also,
g′(x)={k2√k+1,0≤x<3m,3<x≤5
∴ L{g′(3)}=k4 and R{g′(3)}=m
⇒ k4=m i.e, k=4m
On , solving Eqs(i) and (ii) , we get
k=85,m=25
⇒ k+m=2