Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If m is the AM of two distinct real numbers l and n (l,n>1) and G1, G2 and G3  are three geometric means between  l and n , then G41+2G42+G43  equals 


A) 4l2mn

B) 4lm2n

C) 4lmn2

D) 4l2m2n2

Answer:

Option B

Explanation:

Given, m is the AM of l and n 

    l+n=2m          .......(i)

 and G1, G2, G3  are geometric means between l

 and n

l, G1, G2, G3, n are in GP.

 Let r be the common ration of this GP

            G1=lr

                              G2=lr2

                               G3=lr3

                                n=lr4

     r=(nl)1/4

Now,  G41+2G42+G43=(lr)4+2(lr2)4+(lr3)4

            =  l4×r4(1+2r4+r8)

          =  l4×r4(r4+1)2

      =l4×nl(n+ll)2

          =ln×4m2=4lm2n