1)

The sum of coefficients  of integral powers of x in the binomial  expansion of  $(1-2\sqrt{x})^{50}$  is 


A) $\frac{1}{2}(3^{50}+1)$

B) $\frac{1}{2}(3^{50})$

C) $\frac{1}{2}(3^{50}-1)$

D) $\frac{1}{2}(2^{50}+1)$

Answer:

Option A

Explanation:

 Let   $T_{r+1}$ be the general term in the expansion  of  $(1-2\sqrt{x})^{50}$

  $\therefore$  $T_{r+1}$  =   $^{50}C_{r}(1)^{50-r}(-2x^{1/2})^{r}$

                                            = $^{50}C_{r}2^{r}x^{1/2}(-1)^{r}$

 For the integral power of x, r should be  even integer.

  $\therefore$   Sum of coefficients=   $\sum_{r=0}^{25}$    $^{50}C_{2r}(2)^{2r}$

              =  $\frac{1}{2}[(1+2)^{50}+(1-2)^{50}]$

            =  $\frac{1}{2}[3^{50}+1]$

Alter:

We have ,

 $(1-2\sqrt{x})^{50}=C_{0}-C_{1}2\sqrt{x}+C_{2}(2\sqrt{x})^{2}+...+C_{50}(2\sqrt{x})^{50}......(i)$

  $(1+2\sqrt{x})^{50}=C_{0}+C_{1}2\sqrt{x}+C_{2}(2\sqrt{x})^{2}+...+C_{50}(2\sqrt{x})^{50}......(ii)$

 On adding Eqs.(i) and (ii) , we get

   $(1-2\sqrt{x})^{50}+(1+2\sqrt{x})^{50}=2[C_{0}+C_{2}(2\sqrt{x})^{2}+...+C_{50}(2\sqrt{x})^{50}]$

$\Rightarrow   \frac{(1-2\sqrt{x)}^{50}+(1+2\sqrt{x})^{50}}{2}=C_{0}$

                                                    $+C_{2}(2\sqrt{x})^{2}+......+C_{50}(2\sqrt{x})^{50}$

   On putting  x=1, we get

  $\frac{(1-2\sqrt{1})^{50}+(1+2\sqrt{1})^{50}}{2}=C_{0}+C_{2}(2)^{2}+...+C_{50}(2)^{50}$

    $\Rightarrow \frac{(-1)^{50}+(3)^{50}}{2}=C_{0}+C_{2}(2)^{2}+......+C_{50}(2)^{50}$

$ \Rightarrow \frac{1+3^{50}}{2}=C_{0}+C_{2}(2)^{2}+....+C_{50}(2)^{50}$