Answer:
Option C
Explanation:
Given system of linear equations
$2X_{1}-2X_{2}+X_{3}=\lambda X_{1},$
$\Rightarrow$ $(2-\lambda)X_{1}-2X_{2}+X_{3}=0 .......(i)$
$2X_{1}-3X_{2}+2X_{3}=\lambda X_{2}$
$\Rightarrow$ $2X_{1}-(3+\lambda)X_{2}+2X_{3}=0 .......(ii)$
$-X_{1}+2X_{2}=\lambda X_{3}$
$\Rightarrow$ $-X_{1}+2X_{2}-\lambda X_{3}=0$ .......(iii)
Since, the system has non-trival solution.
$\therefore$ $\begin{bmatrix}2-\lambda & -2&1 \\2 & -(3+\lambda)& 2 \\ -1&2&-\lambda \end{bmatrix}=0$
$\Rightarrow (2-\lambda)(3\lambda+\lambda^{2}-4)+2(-2\lambda+2)+1(4-3-\lambda)=0$
$\Rightarrow (2-\lambda)(\lambda^{2}+3\lambda-4)+4(1-\lambda)+(1-\lambda)=0$
$\Rightarrow (2-\lambda)(\lambda+4) (\lambda-1)+5(1-\lambda)=0$
$\Rightarrow (\lambda-1)[(2-\lambda)(\lambda+4)-5]=0$
$\Rightarrow (\lambda-1)(\lambda^{2}+2\lambda-3)=0$
$\Rightarrow (\lambda-1)[(\lambda-1)(\lambda+3)]=0$
$\Rightarrow (\lambda-1)^{2}(\lambda+3)=0$
$\Rightarrow \lambda=1,1,-3