Answer:
Option C
Explanation:
Given, α and β are the roots of the equation x2−6x−2=0
∴ an=αn−βn n≥1
∴ a10=α10−β10
a8=α8−β8
a9=α9−β9
Now, consider
a10−2a82a9=α10−β10−2(α8−β8)2(α9−β9)
=α8(α2−2)−β8(β2−2))2(α9−β9)
=α8.6α−β86β2(α9−β9)
=6α9.−6β92(α9−β9)=62=3
{ ∴ α and β are the roots of the equation:
x2−6x−2=0
or α2 =6 α +2
⇒ α2−2=6α
and β2=6β−2
⇒ β2−2=6β }
Alter :
Since , α and β be thr roots of equation x2−6x−2=0
or x2=6x+2
∴ α2 =6 α +2
⇒ α10=6α9+2α8 ......(i)
Similarly, β10=6β9+2β8.................(ii)
On subtracting Eq. (ii) from Eq.(i) , we get
α10−β10=6(α9−β9)+2(α8−β8) ( ⇒a10=6a9+2a8(∵an=αn−βn) )
⇒a10−2a8=6a9⇒a10−2a82a9=3