Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

A complex number z is said to be unimodular, if |z| =1, suppose  zand z2 are complex numbers such that z12z2zz1z2  is unimodular and z2 is not unimodular.   Then , the point z1 lies on a

 


A) straight line parallel to X-axis

B) Straight line parallel to Y- axis

C) circle of radius 2

D) circle of radius 2

Answer:

Option C

Explanation:

Central Idea:

if z is unimodular, then |z|=1, Also , use property of modulus i.e,   z¯z=|z|2

Given,   z2  is not unimodular i.e, |z2|≠ 1

 and   z12z22z1¯z2 is unimodular.

    z12z22z1¯z2  =1

      z12z22=∣2z1¯z22

           (z12z2)(¯z12¯z2)=(2z1¯z2)(2¯z1z2)                                             (z¯z=|z|2)

     |z1|2+4|z2|22¯z1z22z1¯z2

     (|z2|21)(|z2|24)=0

        |z2|1

      |z1|=2

 Let   z1=x+iyx2+y2=(2)2

     point z1 lies on a circle of radius  2.