Answer:
Option C
Explanation:
Central Idea:
if z is unimodular, then |z|=1, Also , use property of modulus i.e, z¯z=|z|2
Given, z2 is not unimodular i.e, |z2|≠ 1
and z1−2z22−z1¯z2 is unimodular.
⇒ ∣z1−2z22−z1¯z2∣ =1
⇒ ∣z1−2z2∣2=∣2−z1¯z2∣2
⇒ (z1−2z2)(¯z1−2¯z2)=(2−z1¯z2)(2−¯z1z2) (∵z¯z=|z|2)
⇒ |z1|2+4|z2|2−2¯z1z2−2z1¯z2
⇒ (|z2|2−1)(|z2|2−4)=0
∵ |z2|≠1
∵ |z1|=2
Let z1=x+iy⇒x2+y2=(2)2
∴ point z1 lies on a circle of radius 2.