Answer:
Option D
Explanation:
For the given reaction,
$2NO(g)+O_{2}(g)\rightleftharpoons 2NO_{2}(g)$
Given, $\triangle G_{f}^{0} (NO)=86.6 kJ/mol$
$\triangle G_{f}^{0} (NO_{2})=?$
$K_{p}=1.6\times 10^{12}$
Now , we have
$\triangle G_{f}^{0}=2\triangle G_{f(NO_{2})}^{0}-[2\triangle G_{f(NO)}^{0}+ \triangle G_{f(O_{2})}^{0}]$
$-RT ln K_{p}=2\triangle G_{f(NO_{2})}^{0} -(2\times 86600+0)$
$\triangle G_{f(NO_{2})}^{0}=\frac{1}{2}$
$[2\times 86600-R\times298 ln (1.6\times 10^{12}]$
$\triangle G_{f(NO_{2})}^{0}=0.5$
$[2\times 86600-R\times(298) ln (1.6\times 10^{12})]$