1)

A uniformly charged solid sphere of radius R has potential V0 (measured with respect to ∞) on its surface. For this sphere, the equipotential sufaces,  with potentials  3V02,5V04,3V04andV04 have radius R1, R2 ,R3  and R4  respectively. Then   R4


A) R1=0 and R2>(R4R3)

B) R10and(R2R1)(R4R3)

C) R1=0 and R2<(R4R3)

D) 2R< R4

Answer:

Option C,D

Explanation:

Potential at the surface of the charged sphere

2622021946_m22.PNG

V0=KQR  

 V=KQr , rR

  =KQ2R3(3R2r2);rR

   Vcentre=Vc=KQ2R3×3R2

    3KQ2R=3V02

   R1=0

 As potential  decreases for outside points.

Thus, according to the question, we can write

     VR2=5V04=KQ2R3(3R2R22)

     5V04=V02R2(3R2R22)

  or      52=3(R2R)2

          R2=R2

  Similarly,

      VR3=3V04

      KQR3=34×KQR

    or              R3=43R

                    VR4=KQR4=V04

     KQR4=14×KQR

  OR             R4   =4R