Answer:
Option B
Explanation:
Apparent frequency heard by the person before crossing the train.
$f_{1}=\left(\frac{c}{c-v_{s}}\right)f_{0}=\left(\frac{20}{320-20}\right)1000$
Similarily, apparent frequency heard , after crossing the trains
$f_{2}=\left(\frac{c}{c+v_{s}}\right)f_{0}=\left(\frac{20}{320+20}\right)1000$
[c=speed of sound]
$\triangle f= f_{1}-f_{2}=\left(\frac{2cv_{s}}{c^{2}-v_{s}^{2}}\right)f_{0}$
or $\frac{\triangle f}{f_{0}}\times100=\left(\frac{2cv_{s}}{c^{2}-v_{s}^{2}}\right)\times 100$
$=\frac{2\times320\times20}{300\times340}\times100$
$=\frac{2\times32\times20}{3\times34}=$ 12.54%=12%