1)

From a solid sphere of mass M and radius R ,a cube of maximum possible volume is cut.Moment of inertia of cube about an axis passing through its centre and perpendicular to one of its face is 


A) $\frac{MR^{2}}{32\sqrt{2}\pi}$

B) $\frac{MR^{3}}{32\sqrt{2}\pi}$

C) $\frac{4MR^{2}}{9\sqrt{3}\pi}$

D) $\frac{4MR^{2}}{16\sqrt{3}\pi}$

Answer:

Option C

Explanation:

Central idea:

Use geometry of the figure to calculate mass and side length of the cube interns of M and R respectively.

Consider the cross-sectional view of a diametric plane as shown in the adjacent diagram.

 10112020829_20201109_155813.jpg

 

Cross-sectional view of the cube and sphere

 10112020328_20201109_155844.jpg

Using geometry of the cube

$PQ=2R=(\sqrt{3}a)$ or $a=\frac{2R}{\sqrt{3}}$

Volume density of the solid sphere

$\rho=\frac{M}{\frac{4}{3}\pi R^{3}}=\frac{3}{4\pi}\left(\frac{M}{R^{3}}\right)$

Mass of cube $(m)=(\rho)(a)^{3}$

$=\left(\frac{3}{4\pi}\times \frac{M}{R^{3}}\right)$

$=\left(\frac{3}{4\pi}\times \frac{M}{R^{3}}\right)\left[\frac{2R}{\sqrt{3}}\right]^{3}$

$=\frac{3M}{4\pi R^{3}}\times \frac{8R^{3}}{3\sqrt{3}}$

$\frac{2M}{\sqrt{3}\pi}$

Moment of interia of the cube about given axis is

$=\frac{3M}{4\pi R^{3}}\times \frac{8R^{3}}{3\sqrt{3}}$

$I_{y}\frac{ma^{2}}{6}=\frac{2M}{\sqrt{3}\pi}\times \frac{1}{6}\times \frac{4R^{2}}{3}=\frac{4MR^{2}}{9\sqrt{3}\pi}$