Answer:
Option B
Explanation:
Central idea :Given time period $T= 2\pi \sqrt{\frac{L}{g}}$
Thus,Changes can be expressed as
$\pm \frac{2\Delta T}{T}=\pm \frac{\Delta L}{L}\pm \frac{\Delta g}{g}$
According to the question, we can write
$\frac{\Delta L}{L}=\frac{0.1 cm}{20.0 cm}= \frac{1}{200}$
Again time period
$T= \frac{90}{100} s $and $\Delta T=\frac{1}{100} s$
$\frac{\Delta T}{T}=\frac{1}{90} s$
Now,
$T=2\pi \sqrt{\frac{L}{g}}$
$g=4\pi ^{2}\frac{L}{T^{2}}$
$\frac{\Delta g}{g}=\frac{\Delta L}{L} + \frac{2\Delta T}{T}$
$\frac{\Delta g}{g}\times 100%=\frac{\Delta L}{L}\times 100% + \frac{2\Delta T}{T}\times 100%$
$=\left ( \frac{1}{200}\times 100 \right )% + 2\times \frac{1}{90}\times 100% $
$\simeq2.72 \simeq 3%$