1)

Let n1  and n2  be the number of red and black balls. respectively in box I. Let  n3 and n4  be the number of red and black balls respectively in box II.

One of the two boxes, box I and box II a was selected at random and a ball was drawn randomly out of this box. The ball was found to be red. If the probability  that this red ball was drawn  from box II, is  $\frac{1}{3}$, then the correct option(s)  with the possible  values of n1,n2,n3  and nis/are


A) $n_{1}=3,n_{2}=3,n_{3}=5,n_{4}=15$

B) $n_{1}=3,n_{2}=6,n_{3}=10,n_{4}=50$

C) $n_{1}=8,n_{2}=6,n_{3}=5,n_{4}=20$

D) $n_{1}=6,n_{2}=12,n_{3}=5,n_{4}=20$

Answer:

Option A,B

Explanation:

1432021768_m2.JPG

Let A= Drawing red ball

  $\therefore$        $ P(A)=P(B_{1}).P(A/B_{1})+P(B_{2}).P(A/B_{2})$

$=\frac{1}{2}\left(\frac{n_{1}}{n_{1}+n_{2}}\right)+\frac{1}{2}\left(\frac{n_{3}}{n_{3}+n_{4}}\right)$

 Given      $ P(B_{2}/A)$=$\frac{1}{3}$

$\Rightarrow$             $\frac{P(B_{2}).P(B_{2}\cap A)}{P(A)}=\frac{1}{2}$

$\Rightarrow$         $ \frac{\frac{1}{2}\left(\frac{n_{3}}{n_{3}+n_{4}}\right)}{\frac{1}{2}\left(\frac{n_{1}}{n_{1}+n_{2}}\right)+\frac{1}{2}\left(\frac{n_{3}}{n_{3}+n_{4}}\right)}=\frac{1}{3}$

$\Rightarrow$           $\frac{n_{3}(n_{1}+n_{2})}{n_{1}(n_{3}+n_{4})+n_{3}(n_{1}+n_{2})}=\frac{1}{3}$

 Now, check options, then clearly options (a) and (b) satisfy.