Answer:
Option A,B,C
Explanation:
Given, $\int_{1}^{3}x^{2} F'(x)dx=-12$
$\Rightarrow$ $ [x^{2}F(x)]_1^3-\int_{1}^{3}2x.F(x) dx=-12 $
$\Rightarrow 9F(3)-F(1)-\int_{1}^{3}f(x) dx=-12 $
$[\therefore xF(x)=f(x), given]$
$\Rightarrow$ $ -36-0-2\int_{1}^{3} f(x)dx=-12$
$\therefore$ $\int_{1}^{3} f(x) dx=-12$
and $\therefore$ $\int_{1}^{3} x^{3} F"(x) dx=40$
$\Rightarrow$ $[x^{3} F'(x)]_1^3-\int_{1}^{3} 3x^{2}F'(x)dx=40$
$\Rightarrow$ $ [x^{2}(xF'(x)]_1^3-3\times(-12)=40$
$\Rightarrow \left\{x^{2}.[f'(x)-F(x)]\right\}_1^3=4$
$\Rightarrow $ $9[f'(3)-F(3)]-[f'(1)-F(1)]=4$
$\Rightarrow$ $9[f'(3)+4]-[f'(1)-0]=4$
$\Rightarrow$ $ 9f'(3)-f'(1)=-32$