Answer:
Option A,B
Explanation:
Here, f(x)=7tan8x+7tan6x−3tan4x−3tan2x
For all x (−π2,π2)
∴ f(x)=7tan6xsec2x−3tan2xsec2x
= (7tan6x−3tan2x)sec2x
Now, ∫π40xf(x)dx=∫π40x(7tan6x−3tan2x)sec2xdx
= [x(tan7x−tan3x)]π/40
- ∫π/401(tan7x−tan3x)dx
= 0- ∫π/40tan3x(tan4x−1)dx
= −∫π/40tan3x(tan2x−1)sec2xdx
Put tan x=t ⇒sec2xdx=dt
∴ ∫π/40xf(x)=−∫10t3(t2−1)dt
=∫10(tb−t5)dt=[t44−t55]10=14−16=112
Also,
∫π/40f(x)dx=∫π/40(7tan6x−3tan2x)sec2xdx
= ∫10(7t6−3t2)dt=[t7−t3]10=0
-