Answer:
Option B,C
Explanation:
Let F(x)=f(x)-3g(x)
$\therefore$ F(-1)=3, F(0)=3 and F(2)=3
So, F'(x) will vanish atleast twice in $(-1,0)\cup (0,2)$
$\therefore$ $F"(x)>0 $ or $<0,\forall x \epsilon(-1,0)\cup(0,2)$
Hence, f'(x) -3g'(x)=0 has exactly one solution in (-1,0) and one solution in (0,2)