Answer:
Option C
Explanation:
Given $\alpha_{k}=\cos \left(\frac{k\pi}{7}\right)+i\sin \left(\frac{k\pi}{7}\right)$
$=\cos \left(\frac{2k\pi}{14}\right)+i\sin \left(\frac{2k\pi}{14}\right)$
$\therefore$ $\alpha_{k}$ are vertices of regular polygon having 14 sides.
Let the side length of regular polygon be a.
$\therefore$ $|\alpha_{k+1}-\alpha_{k}|$ = length ofa side of the regular polygon =a ........(i)
and $|\alpha_{4k-1}-\alpha_{4k-2}|$ = length of a side of the regular polygon=a
$\therefore$ $\frac{\sum_{k=1}^{12}|\alpha_{k+1}-\alpha_{k}|}{\sum_{k=1}^{3}|\alpha_{4k-1}-\alpha_{4k-2}|}=\frac{12(a)}{3(a)}=4$