1)

 For any integer k, let αk=cos(kπ7)+isin(kπ7) , where  i=1 . The value of the expression  12k=1|αk+1αk|3k=1|α4k1α4k2|=12(a)3(a)  is 

   


A) 2

B) 5

C) 4

D) 6

Answer:

Option C

Explanation:

Given       αk=cos(kπ7)+isin(kπ7)

                              =cos(2kπ14)+isin(2kπ14)

     αk   are  vertices of regular  polygon having 14 sides.

      Let the side length of regular  polygon be a.

      |αk+1αk|    = length  ofa side of the regular polygon =a ........(i)

 and  |α4k1α4k2|  = length of a side of the regular  polygon=a

          12k=1|αk+1αk|3k=1|α4k1α4k2|=12(a)3(a)=4