Answer:
Option A
Explanation:
Here, $\lim_{x \rightarrow1}\frac{F(x)}{G(x)}=\frac{1}{14}$
$\Rightarrow$ $\lim_{x \rightarrow1}\frac{F^{'}(x)}{G^{'}(x)}=\frac{1}{14}$
[ Using L' Hospital's rule ]...........(i)
As $F(x)=\int_{-1}^{x} f(t)dt$
$\Rightarrow$ F'(x)= f(x) .........(ii)
and $G(x)=\int_{-1}^{x}t|f\left\{ f(t)\right\}|dt$
$\Rightarrow$ $G'(x)=x|f\left\{f(x)\right\}|$ ...........(iii)
$\therefore$ $\lim_{x \rightarrow 1}\frac{F(x)}{G(x)}=\lim_{x \rightarrow 1}\frac{F'(x)}{G'(x)}=\lim_{x \rightarrow 1}\frac{f(x)}{x|f\left\{f(x)\right\}|}$
= $\frac{f(1)}{1|f\left\{f(1)\right\}|}=\frac{1/2}{|f(1/2)|}$ ........(iv)
Given, $\lim_{x \rightarrow 1}\frac{F(x)}{G(x)}=\frac{1}{14}$
$\therefore$ $\frac{\frac{1}{2}}{|f\left(\frac{1}{2}\right)|}=\frac{1}{14}\Rightarrow |f\left(\frac{1}{2}\right)|=7$