Answer:
Option B
Explanation:
Degree of ionisation ($\alpha$)= $\frac{^{\wedge}m}{\wedge^{\infty}}$
Let $^{\wedge}m(HY)=x$
$\Rightarrow$ $^{\wedge}m(HX)=\frac{X}{10}$
$\Rightarrow$ $\frac{^{\wedge}m(HX)}{^{\wedge}m(HY)}=\frac{1}{10}=\frac{\alpha(HX)}{\alpha(HY)}$
$[\because ^{\wedge \infty}(HX)=^{\wedge \infty} (HY)]$
Also : $K_{a}(HX)= (0.01)[\alpha(HX)]^{2}$
$K_{a}(HX)= (0.10)[\alpha(HX)]^{2}$
$= (0.10)[10\alpha(HX)]^{2}$
$= 10[\alpha(HX)]^{2}$ ........(ii)
$\Rightarrow$ $\frac{K_{a}(HX)}{K_{a}(HY)}=\frac{0.01}{10}$
$\Rightarrow$ $\log K_{a}(HX)-\log K_{a}(HY)=-3$
$\Rightarrow$ $-\log K_{a}(HX)-[-\log K_{a}(HY)]=3$
$\Rightarrow$ $pK_{a}(HX)-p K_{a}(HY)=3$