1)

 Light guidance in an optical fibre can be understood by considering a structure comprising of thin solid glass cylinder of refractive index n1  surrounded by a medium of lower refractive index n2. The light guidance in  the structure takes place due to successive total internal reflections at the interface of the media n1  and n2 as shown in the figure. All rays with the angle of incidence i less than a particular value im are confined in the medium of refractive index n1 . The numerical aperture  (NA) of the structure is defined as sin im.

If two structures of same cross-sectional area, but different numerical  apertures NA1  and NA2  (NA<NA1) are joined  longitudinally, the numerical aperture  of the combined structure is 


A) $\frac{NA_{1}NA_{2}}{NA_{1}+NA_{2}}$

B) ${NA_{1}+NA_{2}}$

C) $NA_{1}$

D) $NA_{2}$

Answer:

Option D

Explanation:

       $\sin i_{m}=n_{1}\sin (90-\theta_{c})$ 

$\Rightarrow$   $\sin i_{m}=n_{1}\cos\theta_{c}$

$\Rightarrow$                               $NA=n_{1}\sqrt{1-\sin^{2}\theta_{c}}$

                                            $NA=n_{1}\sqrt{1-\frac{n_{2}^{2}}{n_{1}^{2}}}=\sqrt{n^{2}_{1}-n^{2}_{2}}$

 Substituting the values we get,

       $NA_{1}=\frac{3}{4}$   and   $NA_{2}=\frac{\sqrt{15}}{5}=\sqrt{\frac{3}{4}}$

  NA2  <NA1  

   Therefore, the numerical aperture of combined structure is equal to the lesser of the two numerical  aperture. Which is NA2