Answer:
Option D
Explanation:
$\sin i_{m}=n_{1}\sin (90-\theta_{c})$
$\Rightarrow$ $\sin i_{m}=n_{1}\cos\theta_{c}$
$\Rightarrow$ $NA=n_{1}\sqrt{1-\sin^{2}\theta_{c}}$
$NA=n_{1}\sqrt{1-\frac{n_{2}^{2}}{n_{1}^{2}}}=\sqrt{n^{2}_{1}-n^{2}_{2}}$
Substituting the values we get,
$NA_{1}=\frac{3}{4}$ and $NA_{2}=\frac{\sqrt{15}}{5}=\sqrt{\frac{3}{4}}$
NA2 <NA1
Therefore, the numerical aperture of combined structure is equal to the lesser of the two numerical aperture. Which is NA2