1)

Light guidance in an optical fibre can be understood by considering a structure comprising of thin solid glass cylinder of refractive index n1  surrounded by a medium of lower refractive index n2. The light guidance in the structure takes place due to successive total internal reflections at the interface of the media n1  and n2 as shown in the figure. All rays with the angle of incidence i less than a particular value im are confined in the medium of refractive index n1. The numerical aperture  (NA) of the structure is defined as sin I'm.

For two structures namely S1   with $n_{1}=\frac{\sqrt{45}}{4}$  and   $n_{2}=\frac{3}{2}$   and S2    with $n_{1}=\frac{8}{5}$  and $n_{2}=\frac{7}{5}$  and taking the  refractive index of water to be $\frac{4}{3}$  and that to air to be 1. the correct options is/are

1032021671_p1.JPG

 


A) NA of $S_{1}$ immersed in water is the same as that of $S_{2}$ immersed in a liquid of refractive index $\frac{16}{3\sqrt{15}}$

B) NA of $S_{1}$ immersed in liquid of refractive index $\frac{6}{\sqrt{15}}$ is the same as that of $S_{2}$ immersed in water.

C) NA of $S_{1}$ placed in air is the same as that $S_{2}$ immersed in liquid of refractive index $\frac{4}{\sqrt{15}}$

D) NA of $S_{1}$ placed in air is the same as that of $S_{2}$ placed in water

Answer:

Option A

Explanation:

  $\frac{4}{3}\sin i=\frac{\sqrt{45}}{4}\sin(90-\theta_{c})=\frac{\sqrt{45}}{4}\cos \theta_{c}$

                                       $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$

  $\therefore$                    $\cos \theta_{c}=\sqrt{1-\left(\frac{n_{2}}{n_{1}}\right)^{2}}$

            $\Rightarrow$                   $\frac{4}{3} \sin i=\frac{\sqrt{45}}{4}\frac{3}{\sqrt{45}}$

                                               $\sin i=\frac{9}{16}$

 In second case,

                          $\sin \theta_{c}=\frac{n_{2}}{n_{1}}=\frac{7}{8}$

 $\Rightarrow$                  $\cos \theta_{c}=\frac{\sqrt{15}}{8}$   

                      $\frac{16}{3\sqrt{15}}\sin i=\frac{5}{8}\sin (90-\theta)$

 Simplifying we get,   $\sin i=\frac{9}{16}$

  (a) is correct.

 Same approach can be adopted for other options. Correct answers are (a)  and (c).