Answer:
Option D
Explanation:
$C_{1}=\frac{\epsilon_{0}s}{d},C=\frac{2\epsilon_{0}\frac{s}{2}}{\frac{d}{2}}=\frac{2\epsilon_{0}s}{d}$
$C'=\frac{4\epsilon_{0}\frac{s}{2}}{\frac{d}{2}}=\frac{4\epsilon_{0}s}{d}$
and $C"=\frac{2\epsilon_{0}\frac{s}{2}}{d}=\frac{\epsilon_{0}s}{d}$
$C_{2}=\frac{CC'}{C+C'}+C"=\frac{4}{3}\frac{\epsilon_{0}s}{d}+\frac{\epsilon_{0}s}{d}$
= $\frac{7}{3}\frac{\epsilon_{0}s}{d}\frac{C_{2}}{C_{1}}=\frac{7}{3}$