Answer:
Option B,C
Explanation:
Gravitational field at a distance r due to mass 'm'
$E=\frac{G\rho \frac{4}{3}\pi r^{3}}{r^{2}}=\frac{4G\rho \pi r}{3}$
Consider a small element of width dr and are $\triangle A$ at a distance r.
Pressure force on this element outwards = gravitational force on 'dm' from 'm' inwards
$\Rightarrow$ $(dp)\triangle A=E(dm)$
$\Rightarrow$ $-dp.\triangle A=\left\{\frac{4}{3}G \pi \rho r\right\}(\triangle A.dr.\rho)$
$-\int_{0}^{P}dp=\int_{R}^{r}\left(\frac{4G\rho^{2}\pi}{3} \right)rdr$
$-p=\frac{4G\rho^{2}\pi}{3\times 2}[r^{2}-R^{2}]$
$\Rightarrow$ $P=c(R^{2}-r^{2})$
$r=\frac{3R}{4},p_{1}=c\left(R^{2}-\frac{9R^{2}}{16}\right)=c\left(\frac{7R^{2}}{16}\right)$
$r=\frac{2R}{4},p_{2}=c\left(R^{2}-\frac{4R^{2}}{9}\right)=c\left(\frac{5R^{2}}{9}\right)$
$\frac{p_{1}}{p_{2}}=\frac{63}{80}$
$r=\frac{3R}{5},p_{3}=c\left(R^{2}-\frac{9}{25}R^{2}\right)=c\left(\frac{16R^{2}}{25}\right)$
$r=\frac{2R}{5},p_{4}=c\left(R^{2}-\frac{4R^{2}}{25}\right)$
$=c\left(\frac{21R^{2}}{25}\right)\Rightarrow\frac{p_{3}}{p_{4}}=\frac{16}{21}$