Answer:
Option D
Explanation:
For point mass at distance r=3l
$\frac{GMm}{(3l)^{2}}-\frac{Gm^{2}}{l^{2}}=ma$ ......(i)
For point mass at distance r=4l
$\frac{GMm}{(4l)^{2}}+\frac{Gm^{2}}{l^{2}}=ma$ ...........(ii)
Equating the two equations we have,
$\frac{GMm}{9l^{2}}-\frac{Gm^{2}}{l^{2}}=\frac{GMm}{16l^{2}}+\frac{Gm^{2}}{l^{2}}$
$\frac{7GMm}{144}=\frac{2Gm^{2}}{l^{2}}$
$m=\frac{7M}{288}$