Answer:
Option C,D
Explanation:
Given,
$X^{T}=-X,Y^{T}=-Y,Z^{T}=Z$
(a) Let P= $Y^{3}Z^{4}-Z^{4}Y^{3}$
Then, $P^{T}= (Y^{3}Z^{4})^{T}-(Z^{4}Y^{3})^{T}$
$=(Z^{T})^{4}(Y^{T})^{3}-(Y^{T})^{3}(Z^{T})^{4}$
$=-Z^{4}Y^{3}+Y^{3}Z^{4}=P$
$\therefore$ P is symmetric matrix.
(b) Let $P=X^{44}+Y^{44}$
Then, $P^{T}=(X^{T})^{44}+(Y^{T})^{44}$
= $X^{44}+Y^{44}=P$
$\therefore$ P is skew-symmetric matrix.
(c) Let $P=X^{4}Z^{3}-Z^{3}X^{4}$
Then, $P^{T}=(X^{4}Z^{3})^{T}-(Z^{3}X^{4})^{T}$
= $(Z^{T})^{3}(X^{T})^{4}-(X^{T})^{4}(Z^{T})^{3}$
= $Z^{3}X^{4}-X^{4}Z^{3}=-P$
$\therefore$ P is skew- symmetric matrix
(d) Let $P=X^{23}+Y^{23}$
Then, $P^{T}=(X^{T})^{23}+(Y^{T})^{23}$
= -X23 - Y 23
=-P
$\therefore$ P is skew-symmetric matrix.