Answer:
Option A,C,D
Explanation:
Given, |a|= 12, |b|= 4 $\sqrt{3}$
a+b+c= 0
$\Rightarrow$ a=-(b+c)
$\Rightarrow$ $|a|^{2}=|b+c|^{2}$
$\Rightarrow$ $|a|^{2}=|b|^{2}+|c|^{2}+2 b.c$
$\Rightarrow$ $144=48+|c|^{2}+48$
$\Rightarrow$ $|c|^{2}=48\Rightarrow |c|=4\sqrt{3}$
Also, $|c|^{2}=|a|^{2}+|b|^{2}+2.a.b$
$\Rightarrow$ 48=144+48+2.a.b
$\Rightarrow$ a.b=-72
$\therefore$ Option (d) is correct.
Also, a x b=c x a
$\Rightarrow$ a x b +c x a =2a x b
$\Rightarrow$ |a x b +c x a| =2|a x b|
= $2\sqrt{|a|^{2}|b|^{2}-(a.b)^{2}}$
= $2\sqrt{(144)(48)-(-72)^{2}}$
= $2(12)\sqrt{48-36}= 48\sqrt{3}$
. $\therefore$ Option (c) correct.
Also, $\frac{|c|^{2}}{2}-|a|=24-12=12$
$\therefore$ Option (a ) is correct.
and
$\frac{|c|^{2}}{2}+|a|=24+12=36$
$\therefore$ Option (b ) is not correct.