Answer:
Option A,C,D
Explanation:
Given, |a|= 12, |b|= 4 √3
a+b+c= 0
⇒ a=-(b+c)
⇒ |a|2=|b+c|2
⇒ |a|2=|b|2+|c|2+2b.c
⇒ 144=48+|c|2+48
⇒ |c|2=48⇒|c|=4√3

Also, |c|2=|a|2+|b|2+2.a.b
⇒ 48=144+48+2.a.b
⇒ a.b=-72
∴ Option (d) is correct.
Also, a x b=c x a
⇒ a x b +c x a =2a x b
⇒ |a x b +c x a| =2|a x b|
= 2√|a|2|b|2−(a.b)2
= 2√(144)(48)−(−72)2
= 2(12)√48−36=48√3
. ∴ Option (c) correct.
Also, |c|22−|a|=24−12=12
∴ Option (a ) is correct.
and
|c|22+|a|=24+12=36
∴ Option (b ) is not correct.