1)

Let   $ f(x)= \sin\left[ \frac{\pi}{6}\sin(\frac{\pi}{2}\sin x)\right]$  for all x ε  R and   $g(x)= (\pi/2)\sin x4$ for all x ε  R . Let (fog)(x)  denotes f(g(x)) and (gof)(x) denotes g{f(x)} . Then, which of the following is /are true?


A) Range of f is $\left[-\frac{1}{2},\frac{1}{2}\right]$

B) Range of fog is $\left[-\frac{1}{2},\frac{1}{2}\right]$

C) $\lim_{x \rightarrow 0}\frac{f(x)}{g(x)}=\frac{\pi}{6}$

D) There is an an x e R such that (gof)(x)=1

Answer:

Option A,B,C

Explanation:

(a)       $f(x)=\sin \left[ \frac{\pi}{6}sin\frac{\pi}{2}(\sin x)\right],x\epsilon R$

                      =  $\sin (\frac{\pi}{6}\sin \theta),\theta\epsilon\left[-\frac{\pi}{2},\frac{\pi}{2}\right],$

   where               $\theta =\frac{\pi}{2}\sin x$

                                      = $\sin \alpha,\alpha \epsilon\left[-\frac{\pi}{6},\frac{\pi}{6}\right],$

where   $\alpha= \frac{\pi}{6}\sin\theta$

$\therefore$        $f(x)\epsilon  \left[-\frac{1}{2},\frac{1}{2}\right]$

   Hence, range of      $f(x)\epsilon  \left[-\frac{1}{2},\frac{1}{2}\right]$

  So,  option (a) is correct.

 (b)    $f\left\{g(x)\right\}=f(t),t\epsilon \left[- \frac{\pi}{2},\frac{\pi}{2}\right]$

   $\Rightarrow$    $f(t)\epsilon  \left[-\frac{1}{2},\frac{1}{2}\right]$

$\therefore$      Option (b) is correct.

   (c)   $\lim_{x \rightarrow 0}\frac{f(x)}{g(x)}$

                                        $=\lim_{x \rightarrow 0}\frac{\sin\left[\frac{\pi}{6}\sin(\frac{\pi}{2}\sin x)\right]}{\frac{\pi}{2}(\sin x)}$

                          $=\lim_{x \rightarrow 0}\frac{\sin\left[\frac{\pi}{6}\sin(\frac{\pi}{2}\sin x)\right]}{\frac{\pi}{6}\sin(\frac{\pi}{2}\sin x)}$

                                                      $\frac{\frac{\pi}{6}\sin(\frac{\pi}{2}\sin x)}{(\frac{\pi}{2}\sin x)}$

                              =  $1\times \frac{\pi}{6} \times 1=\frac{\pi}{6}$

  $\therefore$    Option (c) is correct.

  (d) g{ f(x)}=1

$\Rightarrow$                  $\frac{\pi}{2}\sin\left\{f(x)\right\}=1$

$\Rightarrow$               $\sin\left\{f(x)\right\}=\frac{2}{\pi}$                    .........(i)

 But              $ f(x)\epsilon \left[-\frac{1}{2},\frac{1}{2}\right]\subset\left[ -\frac{\pi}{6},\frac{\pi}{6}\right]$

$\therefore$   $\sin \left\{  f(x)\right\}\epsilon \left[-\frac{1}{2},\frac{1}{2}\right]$ ..............(ii)

$\Rightarrow$      $\sin \left\{ f(x)\right\}\neq\frac{2}{\pi}$

    [from Eqs(i) and  (ii) ]

 i.e, no solution

 $\therefore$    Option (d) is not correct.