Answer:
Option A,D
Explanation:
Here , $f(x)=\begin{cases}g(x) ,& x > 0\\0, & x = 0\\-g(x), & x<0\end{cases}$
$f'(x)=\begin{cases}g'(x) ,& x \geq 0\\-g(x), & x < 0\end{cases}$
$\therefore$ Option (a) is correct
(b) $h(x)=e^{|x|}=\begin{cases}e^{x} ,& x \geq 0\\e^{-x}, & x < 0\end{cases}$
$\Rightarrow$ $h'(x)=\begin{cases}e^{x} ,& x \geq 0\\-e^{-x}, & x < 0\end{cases}$
$\Rightarrow$ h' (0+ )=1
and h'(o-)=-1
So, h(x) is not differentiable at x=0,
$\therefore$ Option (b) is not correct.
(c) $(foh)(x)=f\left\{h(x)\right\},$ as $h(x)>0$
$= \begin{cases}g(e^{x} ),& x \geq 0\\g(e^{-x}), & x < 0\end{cases}$
$\Rightarrow$ $(foh)'(x)= \begin{cases}e^{x}g^{'}(e^{x}), & x \geq 0\\-e^{-x}g^{'}(e^{-x}) ,& x < 0\end{cases}$
$\Rightarrow$ $(foh)'(0^{+})=g'(1),(foh)'(0^{-})=-g'(1) $
So, (foh)(x) is not differentiable at x=0
$\therefore$ Option (c) is not correct.
(d) $ (hof)(x)=e^{|f(x)| }=\begin{cases}e^{|g(x)|}, & x \neq 0\\e^{0}=1 & x = 0\end{cases}$
Now, $ (hof)'(0)=\lim_{h \rightarrow0}\frac{e^{|g(x)|}-1}{x}$
$=\lim_{h \rightarrow0}\frac{e^{|g(x)|}-1}{|g(x)|}.\frac{|g(x)|}{x}$
$=\lim_{h \rightarrow0}\frac{e^{|g(x)|}-1}{|g(x)|}.\lim_{h \rightarrow 0}\frac{|g(x)-0|}{|x|}.\lim_{h \rightarrow 0}\frac{|x|}{x}$
= $1.g'(0).\lim_{h \rightarrow 0}\frac{|x|}{x}$
= 0, as g'(0)=0
$\therefore$ Option (d) is correct.