Answer:
Option A,D
Explanation:
Here , f(x)={g(x),x>00,x=0−g(x),x<0
f′(x)={g′(x),x≥0−g(x),x<0
∴ Option (a) is correct
(b) h(x)=e^{|x|}=\begin{cases}e^{x} ,& x \geq 0\\e^{-x}, & x < 0\end{cases}
\Rightarrow h'(x)=\begin{cases}e^{x} ,& x \geq 0\\-e^{-x}, & x < 0\end{cases}
\Rightarrow h' (0+ )=1
and h'(o-)=-1
So, h(x) is not differentiable at x=0,
\therefore Option (b) is not correct.
(c) (foh)(x)=f\left\{h(x)\right\}, as h(x)>0
= \begin{cases}g(e^{x} ),& x \geq 0\\g(e^{-x}), & x < 0\end{cases}
\Rightarrow (foh)'(x)= \begin{cases}e^{x}g^{'}(e^{x}), & x \geq 0\\-e^{-x}g^{'}(e^{-x}) ,& x < 0\end{cases}
\Rightarrow (foh)'(0^{+})=g'(1),(foh)'(0^{-})=-g'(1)
So, (foh)(x) is not differentiable at x=0
\therefore Option (c) is not correct.
(d) (hof)(x)=e^{|f(x)| }=\begin{cases}e^{|g(x)|}, & x \neq 0\\e^{0}=1 & x = 0\end{cases}
Now, (hof)'(0)=\lim_{h \rightarrow0}\frac{e^{|g(x)|}-1}{x}
=\lim_{h \rightarrow0}\frac{e^{|g(x)|}-1}{|g(x)|}.\frac{|g(x)|}{x}
=\lim_{h \rightarrow0}\frac{e^{|g(x)|}-1}{|g(x)|}.\lim_{h \rightarrow 0}\frac{|g(x)-0|}{|x|}.\lim_{h \rightarrow 0}\frac{|x|}{x}
= 1.g'(0).\lim_{h \rightarrow 0}\frac{|x|}{x}
= 0, as g'(0)=0
\therefore Option (d) is correct.