Processing math: 20%


1)

 Let  g:RR  be a differentiable  function with g(0)=0, g'(0)=0 and g'(1)≠ 0,f(x)={x|x|g(x)x00x=0  and h(x)=e|x|   For all x ε R. Let (foh)(x) denotes  f{h(x)}  and (hof)(x) denotes h{f(x)} . Then which of the following is/are true?


A) f is differentiable at x=0

B) h is differentiable at x=0

C) foh is differentiable at x=0

D) hof is differentiable at x=0

Answer:

Option A,D

Explanation:

 Here  ,   f(x)={g(x),x>00,x=0g(x),x<0

              f(x)={g(x),x0g(x),x<0

       Option (a) is correct

 (b)           h(x)=e^{|x|}=\begin{cases}e^{x} ,& x \geq 0\\e^{-x}, & x < 0\end{cases}

   \Rightarrow      h'(x)=\begin{cases}e^{x} ,& x \geq 0\\-e^{-x}, & x < 0\end{cases}

 \Rightarrow     h' (0+ )=1

 and     h'(o-)=-1

  So, h(x)  is not differentiable at x=0,

 \therefore   Option (b) is not correct.

  (c)    (foh)(x)=f\left\{h(x)\right\},  as     h(x)>0

                        = \begin{cases}g(e^{x} ),& x \geq 0\\g(e^{-x}), & x < 0\end{cases}

 

 \Rightarrow     (foh)'(x)= \begin{cases}e^{x}g^{'}(e^{x}), & x \geq 0\\-e^{-x}g^{'}(e^{-x}) ,& x < 0\end{cases}

\Rightarrow          (foh)'(0^{+})=g'(1),(foh)'(0^{-})=-g'(1)

             So, (foh)(x)  is not differentiable at x=0

   \therefore    Option (c) is not correct.

  (d)     (hof)(x)=e^{|f(x)| }=\begin{cases}e^{|g(x)|}, & x \neq 0\\e^{0}=1 & x = 0\end{cases}

 Now,           (hof)'(0)=\lim_{h \rightarrow0}\frac{e^{|g(x)|}-1}{x}

                        =\lim_{h \rightarrow0}\frac{e^{|g(x)|}-1}{|g(x)|}.\frac{|g(x)|}{x}

                =\lim_{h \rightarrow0}\frac{e^{|g(x)|}-1}{|g(x)|}.\lim_{h \rightarrow 0}\frac{|g(x)-0|}{|x|}.\lim_{h \rightarrow 0}\frac{|x|}{x}

                            = 1.g'(0).\lim_{h \rightarrow 0}\frac{|x|}{x}

    = 0, as g'(0)=0

     \therefore      Option  (d) is correct.