Answer:
Option A,C
Explanation:
Here , $(1+e^{x})y^{'}+ye^{x}=1,$
$\Rightarrow$ $\frac{dy}{dx}+e^{x}.\frac{dy}{dx}+ye^{x}=1$
$\Rightarrow$ $dy+e^{x}dy+ye^{x}dx=dx$
$\Rightarrow$ $dy+d(e^{x}y) =dx$
On integrating both sides, we get
$y+e^{x}y=x+C$
Given , y(0)=2
$\Rightarrow$ $2+e^{0}.2=0+C$
$\Rightarrow$ C=4
$\therefore$ $y(1+e^{x})=x+4$
$\Rightarrow$ $y=\frac{x+4}{1+e^{x}}$
Now at x=-4, $y=\frac{-4+4}{1+e^{-4}}=0$
$\therefore$ y(-4)=0 ......(i)
For critical points, $\frac{dy}{dx}=0$
i.e, $\frac{dy}{dx}=\frac{(1+e^{x}).1-(x+4)e^{x}}{(1+e^{x})^{2}}=0$
$\Rightarrow$ $e^{x}(x+3)-1=0$
or $e^{-x}=(x+3)$
Clearly, the intersecting point lies between (-1,0)
$\therefore$ y(x) has a critical point in the interval (-1,0)