Answer:
Option D
Explanation:
Here , $f(x)=\begin{cases}[x] ,& x \leq 2\\0, & x > 2\end{cases}$
$I=\int_{-1}^{2} \frac{xf(x^{2})}{2+f(x+1)}dx$
$I=\int_{-1}^{0} \frac{xf(x^{2})}{2+f(x+1)}dx$ + $\int_{0}^{1} \frac{xf(x^{2})}{2+f(x+1)}dx$+ $\int_{1}^{\sqrt{2}} \frac{xf(x^{2})}{2+f(x+1)}dx$
+ $\int_{\sqrt{2}}^{\sqrt{3}} \frac{xf(x^{2})}{2+f(x+1)}dx$ + $\int_{\sqrt{3}}^{2} \frac{xf(x^{2})}{2+f(x+1)}dx$
= $\int_{-1}^{0} odx+\int_{0}^{1} 0 dx+\int_{1}^{\sqrt{2}} \frac{x.1}{2+0}dx+ \int_{\sqrt{2}}^{\sqrt{3}} o dx+\int_{\sqrt{3}}^{2}o.dx $
{ $\because -1<x<0\Rightarrow 0<x^{2}<1\Rightarrow [x^{2}]=0, $
$ o<x<1\Rightarrow 0<x^{2}<1\Rightarrow[x^{2}]=0, $
$ 1< x<\sqrt{2}\Rightarrow $ $\begin{cases}1<x^{2}<2 & \Rightarrow[x^{2}]=1\\2<x+1<1+\sqrt{2} &\Rightarrow f(x+1)=0\end{cases}$
$\Rightarrow$ f(x2)= 0,
and $\sqrt{3}<x<2\Rightarrow3<x^{2}<4$
$\Rightarrow$ f(x2 )=0 }
$\Rightarrow$ $I= \int_{1}^{\sqrt{2}} \frac{x}{2}dx=\left[\frac{x^{2}}{4}\right]^{\sqrt{2}}_{1}$
$=\frac{1}{4}(2-1)=\frac{1}{4}$
$\therefore$ 4l =1 $\Rightarrow$ 4l-1=0