Answer:
Option B
Explanation:
Here, volume of cylindrical container,
V= $\pi r^{2}h$ .............(i)
and let volume of the material used be T.
$\therefore T=\pi \left[(r+2)^{2}-r^{2}\right]h+\pi(r+2)^{2}\times2$
$ T=\pi \left[(r+2)^{2}-r^{2}\right]\frac{V}{\pi r^{2}}+2\pi(r+2)^{2}$
$\left[\because V=\pi r^{2}h\Rightarrow h=\frac{V}{\pi r^{2}}\right]$
$\Rightarrow T=V\left(\frac{r+2}{r}\right)^{2}+2\pi (r+2)^{2}-V$
On differentiating w.r.t , we get
$\frac{dT}{dr}=2V.\left(\frac{r+2}{r}\right).\left(\frac{-2}{r^{2}}\right)+4\pi (r+2)$
At, r=10, $\frac{dT}{dr}=0$
Now, $0=(r+2).4\left(\pi-\frac{V}{r^{3}}\right)$
$\Rightarrow$ $\frac{V}{r^{3}}=\pi, $ where r=10
$\Rightarrow$ $\frac{V}{1000}=\pi, or \frac{V}{250\pi}=4$