Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

 Let  F(X)=x2+π6c2cos2tdt for all xε R and  f:[0,12](0,) be a continuous function, For aϵ[0,12] , if F'(a)+2 is the area of the region bounded by x=0, y=0, y=f(x) and x=a then f(0) is


A) 3

B) 2

C) 1

D) 4

Answer:

Option A

Explanation:

Since , F'(a)+2 is the area bounded by

 x=0, y=0,y=f(x)  and x=a

    a0f(x)dx=F(a)+2

  Using Newton- Leibnitz formula

               f(a)=F"(a)

and f(0) =F" (0)                .........(i)

 Given, f(x)=x2+π6x2cos2tdt

 On differentiating,

                  F(x)=2cos2(x2+π6).2x2cos2x.1

 Again differentiating,

            F"(x)=4{cos2(x2+π6)2xcos(x2+π6)sin(x2+π6)2x}+{4cosx.sinx}

            =4{cos2(x2+π6)4x2cos(x2+π6)sin(x2+π6)}+2sin2x

          F"(0)=4{cos2(π6)}=3

                    f(0)=3