Answer:
Option A
Explanation:
Since , F'(a)+2 is the area bounded by
x=0, y=0,y=f(x) and x=a
$\therefore$ $\int_{0}^{a} f(x) dx=F'(a)+2$
Using Newton- Leibnitz formula
$f(a)=F"(a)$
and f(0) =F" (0) .........(i)
Given, $f(x)=\int_{x}^{x^{2}+\frac{\pi}{6}} 2\cos^{2}t dt$
On differentiating,
$F'(x)=2\cos^{2}\left(x^{2}+\frac{\pi}{6}\right).2x-2\cos^{2}x.1$
Again differentiating,
$F"(x)=4\left\{\cos ^{2}\left(x^{2}+\frac{\pi}{6}\right)-2xcos\left(x^{2}+\frac{\pi}{6}\right)\sin\left(x^{2}+\frac{\pi}{6}\right)2x\right\}+\left\{4\cos x.\sin x\right\}$
$=4\left\{\cos ^{2}\left(x^{2}+\frac{\pi}{6}\right)-4x^{2}\cos \left( x^{2}+\frac{\pi}{6}\right) \sin\left(x^{2}+\frac{\pi}{6}\right)\right\}+2\sin 2x$
$\therefore F"(0)=4\left\{\cos^{2}\left(\frac{\pi}{6}\right)\right\}=3$
$\therefore f(0)=3$