Answer:
Option A
Explanation:
Since , F'(a)+2 is the area bounded by
x=0, y=0,y=f(x) and x=a
∴ ∫a0f(x)dx=F′(a)+2
Using Newton- Leibnitz formula
f(a)=F"(a)
and f(0) =F" (0) .........(i)
Given, f(x)=∫x2+π6x2cos2tdt
On differentiating,
F′(x)=2cos2(x2+π6).2x−2cos2x.1
Again differentiating,
F"(x)=4{cos2(x2+π6)−2xcos(x2+π6)sin(x2+π6)2x}+{4cosx.sinx}
=4{cos2(x2+π6)−4x2cos(x2+π6)sin(x2+π6)}+2sin2x
∴F"(0)=4{cos2(π6)}=3
∴f(0)=3