Answer:
Option A
Explanation:
Here, 54cos22x+(cos4x+sin4x)+(cos6x+sin6x)=2
⇒54cot2x+[(cos2x+sin2x)2−2sin2xcos2x]
+(cos2x+sin2x)[(cos2x+sin2x)2−3sin2xcos2x]=2
⇒54cos22x+(1−2sin2xcos2x)+(1−3cos2xsin2x)=2
⇒54cos22x−5sin2xcos2x=0
⇒ 54cos22x−54sin22x=0
⇒ 54cos22x−54+54cos22x=0
⇒ 52cos22x=54
⇒ cos22x=12⇒2cos22x=1
⇒ 1+cos 4x=1
⇒ cos 4x=0, as 0≤x≤2π
∴
4x={π2,3π2,5π2,7π2,9π2,11π2,13π2,15π2}
as 0≤4x≤8π
⇒x={π8,3π8,5π8,7π8,9π8,11π8,13π8,15π8}
Hence, the total number of solutions is 8.