Answer:
Option B
Explanation:
Here, $-B_{1}-B_{2}-B_{3}-B_{4}-B_{5}-$
out of 5 girls , 4 girls are together and 1 girl is seperate . Now , to select 2 positions out of 6 positions between boys = $^{6}C_{2}$ .............(i)
4 girls are to be selected out of 5= $^{5}C_{4}$ ...........(ii)
Now, 2 groups of girls can be arranged in 2! ways...........(iii)
Also, the group of 4 girls and 5 boys is arranged in 4! X 5! ways .....(iv)
Now, total number of ways $=^{6}C_{2}\times ^{5}C_{4}\times 2!\times4!\times5!$
[ from Eqs. (i),(ii) ,(iii) and (iv)]
$\therefore$ m$=^{6}C_{2}\times ^{5}C_{4}\times 2!\times4!\times5!$
and n= 5! X6!
$\Rightarrow$ $\frac{m}{n}=\frac{^{6}C_{2}\times ^{5}C_{4}\times 2!\times4!\times5!}{6!\times5!}$
= $\frac{15\times5\times2\times4!}{6\times5\times4!}=5$