Answer:
Option B
Explanation:
Let P( t2 ,2t) be a point on the curve y2=4x , whose image is Q(x,y) on x+y+4=0, then

x−t21=y−2t1
=−2(t2+2t+4)12+12
⇒ x=-2t-4
and y=−t2−4
Now, the straight line y=-5 meets the mirror image
∴ −t2−4=−5
⇒ t2=1
⇒ t=±1
Thus, points of intersection of A and B are (-6,-5) and (-2,-5)
∴ Distance , AB= √(−2+6)2+(−5+5)2=4