Answer:
Option B
Explanation:
Let P( t2 ,2t) be a point on the curve $y^{2}=4x$ , whose image is Q(x,y) on x+y+4=0, then
$\frac{x-t^{2}}{1}=\frac{y-2t}{1}$
$=\frac{-2(t^{2}+2t+4)}{1^{2}+1^{2}}$
$\Rightarrow$ x=-2t-4
and y$=-t ^{2}-4$
Now, the straight line y=-5 meets the mirror image
$\therefore$ $-t ^{2}-4=-5$
$\Rightarrow$ $t ^{2}=1$
$\Rightarrow$ $t=\pm1$
Thus, points of intersection of A and B are (-6,-5) and (-2,-5)
$\therefore$ Distance , AB= $\sqrt{(-2+6)^{2}+(-5+5)^{2}}=4$