Answer:
Option B,D
Explanation:
Ist particle
P=0 at x=a $\Rightarrow$ 'a' in the amplitude of oscillation 'A1'
At x=0, P=b (at mean position)
$\Rightarrow$ $mv_{max}=b\Rightarrow v_{max}=\frac{b}{m}$
$E_{1}=\frac{1}{2}mv^{2}_{max}=\frac{m}{2}\left[\frac{b}{m}\right]^{2}=\frac{b^{2}}{2m}$
$A_{1}\omega_{1}=v_{max}=\frac{b}{m}$
$\Rightarrow$ $\omega_{1}=\frac{b}{ma}=\frac{1}{mn^{2}}\left(A_{1}=a, \frac{a}{b}=n^{2}\right)$
II nd particle
P=0 at x= R $\Rightarrow$ A2 = R
At x=0, P=R $\Rightarrow$ $v_{max}=\frac{R}{m}$
$E_{2}=\frac{1}{2}mv_{max}^{2}=\frac{m}{2}\left[\frac{R}{m}\right]^{2}=\frac{R^{2}}{2m}$
$A_{2}\omega_{2}=\frac{R}{m}\Rightarrow \omega_{2}=\frac{R}{mR}=\frac{1}{m}$
(b)
$\frac{\omega_{2}}{\omega_{1}}=\frac{1/m}{1/mn^{2}}=n^{2}$
(c) $\omega_{1}{\omega_{2}}=\frac{1}{mn^{2}}\times\frac{1}{m}=\frac{1}{m^{2}n^{2}}$
(d) $\frac{E_{1}}{\omega_{1}}=\frac{b^{2/}2m}{1/mn^{2}}=\frac{b^{2}n^{2}}{2}=\frac{a^{2}}{2n^{2}}=\frac{R^{2}}{2}$
$\frac{E_{2}}{\omega_{2}}=\frac{R^{2}/2m}{1/m}=\frac{R^{2}}{2}$
$\Rightarrow$ $\frac{E_{1}}{\omega_{1}}=\frac{E_{2}}{\omega_{2}}$
Note: It is not given that the second figure is a circle . But from the figure and as per the requirement of question , we consider it is a circle