1)

 Two independent harmonic oscillators of equal  masses are oscillating about the origin with angular frequencies   ω1 and  ω2 and have  total energies  E1  and E1, respectively, The variations  of their momenta p with  positions  x are shown  in the figures, If  ab=n2  and aR=n, then the correct equations is/are

732021208_p9.JPG


A) E1ω1=E2ω2

B) ω2ω1=n2

C) ω1ω2=n2

D) E1ω1=E2ω2

Answer:

Option B,D

Explanation:

 Ist particle

               P=0 at x=a    'a'  in the amplitude of oscillation 'A1'

At x=0, P=b         (at mean position)

   mvmax=bvmax=bm

  E1=12mv2max=m2[bm]2=b22m

A1ω1=vmax=bm

      ω1=bma=1mn2(A1=a,ab=n2)

  II nd particle

  P=0 at x= R   A2 = R

At   x=0, P=R   vmax=Rm

  E2=12mv2max=m2[Rm]2=R22m

   A2ω2=Rmω2=RmR=1m

  (b)  

                ω2ω1=1/m1/mn2=n2

(c)           ω1ω2=1mn2×1m=1m2n2

  (d)  E1ω1=b2/2m1/mn2=b2n22=a22n2=R22

             E2ω2=R2/2m1/m=R22

      E1ω1=E2ω2

 Note:    It is not given that the second figure is a circle . But from the figure and as per the requirement of question , we consider it is a circle