Answer:
Option B
Explanation:
Power, $P=(\sigma T^{4}A)=\sigma T^{4}(4\pi R^{2})$
or $P \propto T^{4}R^{2}$ .........(i)
According to Wien's law,
$\lambda\propto \frac{1}{T}$
($\lambda$ is the wavelength at which peak occurs)
$\therefore$ Eq (i) will become,
$P\propto \frac{R^{2}}{\lambda^{4}}$
or $\lambda\propto \left[\frac{R^{2}}{P}\right]^{1/4}$
$\Rightarrow$ $\frac{\lambda_{A}}{\lambda_{B}}=\left[\frac{R_{A}}{R_{B}}\right]^{1/2} \left[\frac{P_{A}}{P_{B}}\right]^{1/4}$
$=[400]^{1/2}\left[\frac{1}{10^{4}}\right]^{1/4}=2$