Answer:
Option C
Explanation:
At height h
$g'=\frac{g}{\left(1+\frac{h}{R}\right)^{2}}$ ......(i)
Given, $g'=\frac{g}{4}$
Substituting in Eq .(i) we get,
h=R
Now, From A to B,
Decrease in kinetic energy= increase in potential energy
$\Rightarrow$ $\frac{1}{2}mv^{2}=\frac{mgh}{1+\frac{h}{R}}$
$\Rightarrow$ $\frac{v^{2}}{2}=\frac{gh}{1+\frac{h}{R}}=\frac{1}{2}gR$ (h=R)
$\Rightarrow$ $v^{2}= gR$ or $v= \sqrt{gR}$
Now, $v_{esc}=\sqrt{2gR}=v\sqrt{2}$
$\Rightarrow$ N=2