Answer:
Option A
Explanation:
$\mu(S_{2}P)-S_{1}P=m\lambda$
$\Rightarrow$ $\mu\sqrt{d^{2}+x^{2}}-\sqrt{d^{2}+x^{2}}=m\lambda$
$\Rightarrow$ $(\mu-1)\sqrt{d^{2}+x^{2}}=m\lambda$
$\Rightarrow$ $(\frac{4}{3}-1)\sqrt{d^{2}+x^{2}}=m\lambda$
or $\sqrt{d^{2}+x^{2}}=3m\lambda$
Squaring this equation we get,
$x^{2}=9m^{2}\lambda^{2}-d^{2}$
$\Rightarrow$ $P^{2}=9$ OR P=3