Answer:
Option D
Explanation:
In $\triangle OA_{1}B_{1},$
$\tan 45^{0}=\frac{A_{1}B_{1}}{OB_{1}}\Rightarrow \frac{20}{OB_{1}}=1$
$\Rightarrow$ $ OB_{1}=20$
$\triangle OA_{2}B_{2},$
$\tan 30^{0}=\frac{20}{OB_{2}}$
$\Rightarrow$ $OB_{2}=20\sqrt{3}$
$\Rightarrow$ $B_{1}B_{2}+OB_{1}=20\sqrt{3}$
$\Rightarrow$ $B_{1}B_{2}=20\sqrt{3}-20$
$\Rightarrow$ $B_{1}B_{2}=20(\sqrt{3}-1)m$
Now, speed = $\frac{Distance}{Time}=\frac{20(\sqrt{3}-1)}{1}$
= $20(\sqrt{3}-1)$ m/s