1) If fk(x)=1/k(sinkx+coskx) , where x ε R and k≥1 , then f4(x)−f6(x) is equal to A) 1/6 B) 1/3 C) 1/4 D) 1/12 Answer: Option DExplanation:Given fk(x)=1/k(sinkx+coskx) , where x ε R and k>1 f4(x)−f6(x) = 14(sin4x+cos4x)−16(sin6x+cos6x) = 14(1−2sin2x.cos2x−16(1−3sin2x.cos2x) = 14−16=112