Answer:
Option D
Explanation:
Given $f_{k}(x)=1/k(\sin^{k}x+\cos^{k}x)$ , where x ε R and k>1
$f_{4}(x)-f_{6}(x)$ = $\frac{1}{4}(\sin^{4}x+\cos^{4}x)-\frac{1}{6}(\sin^{6}x+\cos^{6}x)$
= $\frac{1}{4}(1-2\sin^{2}x.\cos^{2}x-\frac{1}{6}(1-3\sin^{2}x.\cos^{2}x)$
= $\frac{1}{4}-\frac{1}{6}=\frac{1}{12}$