Answer:
Option A
Explanation:
Given , $P(\overline{A\cup B})=\frac{1}{6}, P(A\cap B)=\frac{1}{4}$
$P(\overline{A})=\frac{1}{4}$
$\therefore$ $P(A\cup B)=1-P(\overline{A\cup B)}$
=$1-\frac{1}{6}=\frac{5}{6}$
and $P(A)=1-P(\overline{A})$
= $1-\frac{1}{4}=\frac{3}{4}$
$P(A \cup B)=P(A)+P(B)-P(A\cap B)$
$\Rightarrow$ $\frac{5}{6}=\frac{3}{4}+P(B)-\frac{1}{4}$
$P(B)=\frac{1}{3}\Rightarrow$ A and B are not equally likely
$P(A\cap B)= P(A).P(B)=\frac{1}{4}$
So, events are independent.