Answer:
Option B
Explanation:
Use the following formula to simplify
a x (bx c)=(a.c)b-(a.b)c
[abc]=[bca]=[cab]
and [a a b]=[a b b]=[a c c]=0
Now, [ a x ba x c c x a]
= a xb.(( b xc ) x (c xa))
= a x b.(k x (c x a))
Let k= b x c
= a x b.((k.a) c-(k.c).a)
= (a x b).( ( b x c. a) c -(b x c. c) a)
= ( a x b). ([b c a ] c)-0
[ $\because$ [ b x c.c ]=0]
= (a x b).c [ b c a]
= [ a b c ] [ b c a]= [ a b c]2
[ $\because$ [a b c]=[b c a] ]
But given,
[ a x b b x c c xa]= λ [ a b c]2
So [a b c]2 = λ [ a b c ]2
$\Rightarrow$ $\lambda$ =1