Answer:
Option A
Explanation:
Let the tangent to parabola be y=mx+a/m, If it touches the other curve, then D=0, to get the value of m
For parabola, $y^{2}=4x$
Let y=mx+1/m be tangent line and it touches the parabola $x^{2}=-32y$
$\therefore$ $ x^{2}=-32\left(mx+\frac{1}{m}\right)$
$\Rightarrow $ $x^{2}+32mx+\frac{32}{m}=0$
$\therefore$ D=0
$\therefore$ $(32m)^{2}-4.\left(\frac{32}{m}\right)=0$
$\Rightarrow $ $m^{3}=\frac{1}{8}$
$\therefore$ m$=\frac{1}{2}$