Answer:
Option A
Explanation:
Given, differential equation $\frac{dp}{dt}-\frac{1}{2}p(t)=-200$ is linear ndifferential equation
Here, $p(t)=-\frac{1}{2}, Q(t)= -200$
$IF=e^{\int_{}^{} -(\frac{1}{2})dt}=e^{-t/2}$
Hence, solution is
$p(t).IF=\int_{}^{} Q(t)IF dt$
$p(t).e^{-t/2}=\int_{}^{} -200.e^{-\frac{t}{2}dt}$
$p(t).e^{-t/2}= 400.e^{-\frac{t}{2}}+K$
$\Rightarrow$ $ p(t).= 400+ke^{-\frac{1}{2}}$
if p(0)=100, then k=-300
$\Rightarrow$ $400-300e^{\frac{t}{2}}$