Answer:
Option A
Explanation:
Given, $A= \left\{(X,Y):x^{2}+y^{2}\leq 1 \right\} and \left\{y^{2}\leq 1-x\right\}$ is
Required area = $\frac{1}{2}\pi r^{2}+2\int_{0}^{1} (1-y^{2})dy$
= $\frac{1}{2}\pi (1)^{2}+2\left(y-\frac{y^{3}}{3}\right)_0^1$
=$\frac{\pi}{2}+\frac{4}{3}$