Answer:
Option D
Explanation:
Use the formula
|x−a|={x−a,x≥a−(x−a),x<a
to break given integral in two parts and then integrate separetely
= ∫π0√(1−2sinx2)2dx=∫π0|1−2sinx2|dx
=∫π/30(1−2sinx2)dx=∫ππ/3(1−2sinx2)dx
=(x+4cosx2)π/30−(x+4cosx2)ππ/3
= 4√3−4−π3