Answer:
Option D
Explanation:
Use the formula
$|x-a|=\begin{cases}x-a, & x \geq a\\-(x-a), & x < a\end{cases}$
to break given integral in two parts and then integrate separetely
= $\int_{0}^{\pi} \sqrt{\left(1-2\sin\frac{x}{2}\right)^{2}}dx=\int_{0}^{\pi} |1-2\sin\frac{x}{2}| dx$
=$\int_{0}^{\pi/3} \left(1-2\sin\frac{x}{2}\right)^{}dx=\int_{\pi/3}^{\pi} \left(1-2\sin\frac{x}{2}\right) dx$
=$\left(x+4\cos\frac{x}{2}\right)_{0}^{\pi/3}-\left(x+4\cos\frac{x}{2}\right)_{\pi/3}^{\pi}$
= $4\sqrt{3}-4-\frac{\pi}{3}$