Answer:
Option C
Explanation:
Here , x=-1 and x=2 are extreme points of $f(x)=\alpha\log|x|+\beta x^{2}+x$, then
$f '(x)=\frac{\alpha}{x}+2\beta x+1$
$f '(-1)=-\alpha-2\beta+1=0$ ........(i)
[ At extreme point, f '(x0=0]
$f'(2)=\frac{\alpha}{2}+4\beta+1=0$ .......(ii)
On solving Eqs. (i) and (ii) , we get
$\alpha=2,\beta=-1/2$