1) If x=-1 and x=2 are extreme points of f(x)=αlog|x|+βx2+x , then A) α=−6,β=12 B) α=−6,β=−12 C) α=2,β=−12 D) α=2,β=12 Answer: Option CExplanation:Here , x=-1 and x=2 are extreme points of f(x)=αlog|x|+βx2+x, then f′(x)=αx+2βx+1 f′(−1)=−α−2β+1=0 ........(i) [ At extreme point, f '(x0=0] f′(2)=α2+4β+1=0 .......(ii) On solving Eqs. (i) and (ii) , we get α=2,β=−1/2