1)

If x=-1 and x=2  are extreme points of   f(x)=αlog|x|+βx2+x , then


A) α=6,β=12

B) α=6,β=12

C) α=2,β=12

D) α=2,β=12

Answer:

Option C

Explanation:

Here , x=-1 and x=2 are extreme points of f(x)=αlog|x|+βx2+x, then

f(x)=αx+2βx+1

f(1)=α2β+1=0            ........(i)

                     [ At extreme point, f '(x0=0]

f(2)=α2+4β+1=0                  .......(ii)

 On solving  Eqs. (i) and (ii) , we get

     α=2,β=1/2