Loading [MathJax]/jax/element/mml/optable/MathOperators.js


1)

limx0sin(πcos2x)x2   is equal to 


A) π2

B) 1

C) π

D) -π

Answer:

Option D

Explanation:

  limx0sin(πcos2x)x2

   = limx0sinπ(1sin2x)x2

     = limx0sin(ππsin2x)x2

  =limx0sin(πsin2x)x2

                   [    \sin(\pi-\theta)=\sin\theta ]

               =\lim_{x \rightarrow0}\frac{\sin\pi\sin ^{2}x}{\pi\sin^{2}x}\times (\pi)\left[\frac{\sin^{2}x}{x^{2}}\right]

  =      \pi                     [\lim_{x \rightarrow0}\frac{\sin\theta}{\theta}=1]