Answer:
Option D
Explanation:
limx→0sin(πcos2x)x2
= limx→0sinπ(1−sin2x)x2
= limx→0sin(π−πsin2x)x2
=limx→0sin(πsin2x)x2
[ ∵ \sin(\pi-\theta)=\sin\theta ]
=\lim_{x \rightarrow0}\frac{\sin\pi\sin ^{2}x}{\pi\sin^{2}x}\times (\pi)\left[\frac{\sin^{2}x}{x^{2}}\right]
= \pi [\lim_{x \rightarrow0}\frac{\sin\theta}{\theta}=1]