Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If   (10)9+2(11)1(10)8+3(11)2(10)7+....+10(11)9=k(10)9    then k is equal to


A) 12110

B) 441100

C) 100

D) 110

Answer:

Option C

Explanation:

k.109=109+2(11)1(10)8+3((11)2(10)7+....+10(11)9

   k=1+2(1110)+3(1110)2+...+10(1110)9    .......(i)

(1110)k=1(1110)+2(1110)2+...+9(1110)9+10(1110)10        ..........(ii)

  On subtracting Eq,(ii) from Eq.(i) , we get

k(11110)=1+(1110)+(1110)2+...+(1110)910(1110)10

     k(101110)=1[(1110)101](11101)10(1110)10

    In GP sum of n terms =  a(rn1)r1  when r>1]

       -k

.=10[10(1110)101010(1110)10]

                 k=100