Answer:
Option C
Explanation:
k.109=109+2(11)1(10)8+3((11)2(10)7+....+10(11)9
k=1+2(1110)+3(1110)2+...+10(1110)9 .......(i)
(1110)k=1(1110)+2(1110)2+...+9(1110)9+10(1110)10 ..........(ii)
On subtracting Eq,(ii) from Eq.(i) , we get
k(1−1110)=1+(1110)+(1110)2+...+(1110)9−10(1110)10
⇒ k(10−1110)=1[(1110)10−1](1110−1)−10(1110)10
[ ∵ In GP sum of n terms = a(rn−1)r−1 when r>1]
⇒ -k
.=10[10(1110)10−10−10(1110)10]
k=100