1)

 The angle between the lines whose direction cosines satisfy  the equations l+m+m=0  and l2 =m2+n2  is


A) $\frac{\pi}{3}$

B) $\frac{\pi}{4}$

C) $\frac{\pi}{6}$

D) $\frac{\pi}{2}$

Answer:

Option A

Explanation:

We konow  that angle berween two lines is 

$\cos \theta=\frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}$

              l+m+n=0

$\Rightarrow$         $l=-(m+n)$

$\Rightarrow$       $(m+n)^{2}=l^{2}$

   $\Rightarrow$      $ m^{2}+n^{2}+2mn=m^{2}+n^{2}$

                                                          [ $\because l^{2}=m^{2}+n^{2},given$]

   $\Rightarrow$               2mn=0

  when m=0 $\Rightarrow$ l=-n

 Hence, (l,m,n) is (1,0,-1)

 when n=0, then l=-m

 Hence , (l,m,n) is (1,0,-1)

 $\therefore$        $\cos\theta=\frac{1+0+0}{\sqrt{2}\times\sqrt{2}}$

  =   $\frac{1}{2}$

   $\Rightarrow$    θ=$\frac{\pi}{3}$